Highest Common Factor of 457, 873, 748, 433 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 457, 873, 748, 433 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 457, 873, 748, 433 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 457, 873, 748, 433 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 457, 873, 748, 433 is 1.

HCF(457, 873, 748, 433) = 1

HCF of 457, 873, 748, 433 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 457, 873, 748, 433 is 1.

Highest Common Factor of 457,873,748,433 using Euclid's algorithm

Highest Common Factor of 457,873,748,433 is 1

Step 1: Since 873 > 457, we apply the division lemma to 873 and 457, to get

873 = 457 x 1 + 416

Step 2: Since the reminder 457 ≠ 0, we apply division lemma to 416 and 457, to get

457 = 416 x 1 + 41

Step 3: We consider the new divisor 416 and the new remainder 41, and apply the division lemma to get

416 = 41 x 10 + 6

We consider the new divisor 41 and the new remainder 6,and apply the division lemma to get

41 = 6 x 6 + 5

We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 457 and 873 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(41,6) = HCF(416,41) = HCF(457,416) = HCF(873,457) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 748 > 1, we apply the division lemma to 748 and 1, to get

748 = 1 x 748 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 748 is 1

Notice that 1 = HCF(748,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 433 > 1, we apply the division lemma to 433 and 1, to get

433 = 1 x 433 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 433 is 1

Notice that 1 = HCF(433,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 457, 873, 748, 433 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 457, 873, 748, 433?

Answer: HCF of 457, 873, 748, 433 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 457, 873, 748, 433 using Euclid's Algorithm?

Answer: For arbitrary numbers 457, 873, 748, 433 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.