Highest Common Factor of 458, 5743, 6408 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 458, 5743, 6408 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 458, 5743, 6408 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 458, 5743, 6408 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 458, 5743, 6408 is 1.

HCF(458, 5743, 6408) = 1

HCF of 458, 5743, 6408 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 458, 5743, 6408 is 1.

Highest Common Factor of 458,5743,6408 using Euclid's algorithm

Highest Common Factor of 458,5743,6408 is 1

Step 1: Since 5743 > 458, we apply the division lemma to 5743 and 458, to get

5743 = 458 x 12 + 247

Step 2: Since the reminder 458 ≠ 0, we apply division lemma to 247 and 458, to get

458 = 247 x 1 + 211

Step 3: We consider the new divisor 247 and the new remainder 211, and apply the division lemma to get

247 = 211 x 1 + 36

We consider the new divisor 211 and the new remainder 36,and apply the division lemma to get

211 = 36 x 5 + 31

We consider the new divisor 36 and the new remainder 31,and apply the division lemma to get

36 = 31 x 1 + 5

We consider the new divisor 31 and the new remainder 5,and apply the division lemma to get

31 = 5 x 6 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 458 and 5743 is 1

Notice that 1 = HCF(5,1) = HCF(31,5) = HCF(36,31) = HCF(211,36) = HCF(247,211) = HCF(458,247) = HCF(5743,458) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 6408 > 1, we apply the division lemma to 6408 and 1, to get

6408 = 1 x 6408 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 6408 is 1

Notice that 1 = HCF(6408,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 458, 5743, 6408 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 458, 5743, 6408?

Answer: HCF of 458, 5743, 6408 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 458, 5743, 6408 using Euclid's Algorithm?

Answer: For arbitrary numbers 458, 5743, 6408 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.