Highest Common Factor of 459, 970, 994, 338 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 459, 970, 994, 338 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 459, 970, 994, 338 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 459, 970, 994, 338 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 459, 970, 994, 338 is 1.

HCF(459, 970, 994, 338) = 1

HCF of 459, 970, 994, 338 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 459, 970, 994, 338 is 1.

Highest Common Factor of 459,970,994,338 using Euclid's algorithm

Highest Common Factor of 459,970,994,338 is 1

Step 1: Since 970 > 459, we apply the division lemma to 970 and 459, to get

970 = 459 x 2 + 52

Step 2: Since the reminder 459 ≠ 0, we apply division lemma to 52 and 459, to get

459 = 52 x 8 + 43

Step 3: We consider the new divisor 52 and the new remainder 43, and apply the division lemma to get

52 = 43 x 1 + 9

We consider the new divisor 43 and the new remainder 9,and apply the division lemma to get

43 = 9 x 4 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 459 and 970 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(43,9) = HCF(52,43) = HCF(459,52) = HCF(970,459) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 994 > 1, we apply the division lemma to 994 and 1, to get

994 = 1 x 994 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 994 is 1

Notice that 1 = HCF(994,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 338 > 1, we apply the division lemma to 338 and 1, to get

338 = 1 x 338 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 338 is 1

Notice that 1 = HCF(338,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 459, 970, 994, 338 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 459, 970, 994, 338?

Answer: HCF of 459, 970, 994, 338 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 459, 970, 994, 338 using Euclid's Algorithm?

Answer: For arbitrary numbers 459, 970, 994, 338 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.