Highest Common Factor of 462, 810, 824 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 462, 810, 824 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 462, 810, 824 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 462, 810, 824 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 462, 810, 824 is 2.

HCF(462, 810, 824) = 2

HCF of 462, 810, 824 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 462, 810, 824 is 2.

Highest Common Factor of 462,810,824 using Euclid's algorithm

Highest Common Factor of 462,810,824 is 2

Step 1: Since 810 > 462, we apply the division lemma to 810 and 462, to get

810 = 462 x 1 + 348

Step 2: Since the reminder 462 ≠ 0, we apply division lemma to 348 and 462, to get

462 = 348 x 1 + 114

Step 3: We consider the new divisor 348 and the new remainder 114, and apply the division lemma to get

348 = 114 x 3 + 6

We consider the new divisor 114 and the new remainder 6, and apply the division lemma to get

114 = 6 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 6, the HCF of 462 and 810 is 6

Notice that 6 = HCF(114,6) = HCF(348,114) = HCF(462,348) = HCF(810,462) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 824 > 6, we apply the division lemma to 824 and 6, to get

824 = 6 x 137 + 2

Step 2: Since the reminder 6 ≠ 0, we apply division lemma to 2 and 6, to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 6 and 824 is 2

Notice that 2 = HCF(6,2) = HCF(824,6) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 462, 810, 824 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 462, 810, 824?

Answer: HCF of 462, 810, 824 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 462, 810, 824 using Euclid's Algorithm?

Answer: For arbitrary numbers 462, 810, 824 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.