Highest Common Factor of 463, 856, 893 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 463, 856, 893 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 463, 856, 893 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 463, 856, 893 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 463, 856, 893 is 1.

HCF(463, 856, 893) = 1

HCF of 463, 856, 893 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 463, 856, 893 is 1.

Highest Common Factor of 463,856,893 using Euclid's algorithm

Highest Common Factor of 463,856,893 is 1

Step 1: Since 856 > 463, we apply the division lemma to 856 and 463, to get

856 = 463 x 1 + 393

Step 2: Since the reminder 463 ≠ 0, we apply division lemma to 393 and 463, to get

463 = 393 x 1 + 70

Step 3: We consider the new divisor 393 and the new remainder 70, and apply the division lemma to get

393 = 70 x 5 + 43

We consider the new divisor 70 and the new remainder 43,and apply the division lemma to get

70 = 43 x 1 + 27

We consider the new divisor 43 and the new remainder 27,and apply the division lemma to get

43 = 27 x 1 + 16

We consider the new divisor 27 and the new remainder 16,and apply the division lemma to get

27 = 16 x 1 + 11

We consider the new divisor 16 and the new remainder 11,and apply the division lemma to get

16 = 11 x 1 + 5

We consider the new divisor 11 and the new remainder 5,and apply the division lemma to get

11 = 5 x 2 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 463 and 856 is 1

Notice that 1 = HCF(5,1) = HCF(11,5) = HCF(16,11) = HCF(27,16) = HCF(43,27) = HCF(70,43) = HCF(393,70) = HCF(463,393) = HCF(856,463) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 893 > 1, we apply the division lemma to 893 and 1, to get

893 = 1 x 893 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 893 is 1

Notice that 1 = HCF(893,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 463, 856, 893 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 463, 856, 893?

Answer: HCF of 463, 856, 893 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 463, 856, 893 using Euclid's Algorithm?

Answer: For arbitrary numbers 463, 856, 893 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.