Highest Common Factor of 464, 845 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 464, 845 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 464, 845 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 464, 845 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 464, 845 is 1.

HCF(464, 845) = 1

HCF of 464, 845 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 464, 845 is 1.

Highest Common Factor of 464,845 using Euclid's algorithm

Highest Common Factor of 464,845 is 1

Step 1: Since 845 > 464, we apply the division lemma to 845 and 464, to get

845 = 464 x 1 + 381

Step 2: Since the reminder 464 ≠ 0, we apply division lemma to 381 and 464, to get

464 = 381 x 1 + 83

Step 3: We consider the new divisor 381 and the new remainder 83, and apply the division lemma to get

381 = 83 x 4 + 49

We consider the new divisor 83 and the new remainder 49,and apply the division lemma to get

83 = 49 x 1 + 34

We consider the new divisor 49 and the new remainder 34,and apply the division lemma to get

49 = 34 x 1 + 15

We consider the new divisor 34 and the new remainder 15,and apply the division lemma to get

34 = 15 x 2 + 4

We consider the new divisor 15 and the new remainder 4,and apply the division lemma to get

15 = 4 x 3 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 464 and 845 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(15,4) = HCF(34,15) = HCF(49,34) = HCF(83,49) = HCF(381,83) = HCF(464,381) = HCF(845,464) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 464, 845 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 464, 845?

Answer: HCF of 464, 845 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 464, 845 using Euclid's Algorithm?

Answer: For arbitrary numbers 464, 845 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.