Highest Common Factor of 464, 849, 537, 526 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 464, 849, 537, 526 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 464, 849, 537, 526 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 464, 849, 537, 526 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 464, 849, 537, 526 is 1.

HCF(464, 849, 537, 526) = 1

HCF of 464, 849, 537, 526 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 464, 849, 537, 526 is 1.

Highest Common Factor of 464,849,537,526 using Euclid's algorithm

Highest Common Factor of 464,849,537,526 is 1

Step 1: Since 849 > 464, we apply the division lemma to 849 and 464, to get

849 = 464 x 1 + 385

Step 2: Since the reminder 464 ≠ 0, we apply division lemma to 385 and 464, to get

464 = 385 x 1 + 79

Step 3: We consider the new divisor 385 and the new remainder 79, and apply the division lemma to get

385 = 79 x 4 + 69

We consider the new divisor 79 and the new remainder 69,and apply the division lemma to get

79 = 69 x 1 + 10

We consider the new divisor 69 and the new remainder 10,and apply the division lemma to get

69 = 10 x 6 + 9

We consider the new divisor 10 and the new remainder 9,and apply the division lemma to get

10 = 9 x 1 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 464 and 849 is 1

Notice that 1 = HCF(9,1) = HCF(10,9) = HCF(69,10) = HCF(79,69) = HCF(385,79) = HCF(464,385) = HCF(849,464) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 537 > 1, we apply the division lemma to 537 and 1, to get

537 = 1 x 537 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 537 is 1

Notice that 1 = HCF(537,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 526 > 1, we apply the division lemma to 526 and 1, to get

526 = 1 x 526 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 526 is 1

Notice that 1 = HCF(526,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 464, 849, 537, 526 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 464, 849, 537, 526?

Answer: HCF of 464, 849, 537, 526 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 464, 849, 537, 526 using Euclid's Algorithm?

Answer: For arbitrary numbers 464, 849, 537, 526 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.