Highest Common Factor of 466, 165, 353, 120 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 466, 165, 353, 120 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 466, 165, 353, 120 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 466, 165, 353, 120 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 466, 165, 353, 120 is 1.

HCF(466, 165, 353, 120) = 1

HCF of 466, 165, 353, 120 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 466, 165, 353, 120 is 1.

Highest Common Factor of 466,165,353,120 using Euclid's algorithm

Highest Common Factor of 466,165,353,120 is 1

Step 1: Since 466 > 165, we apply the division lemma to 466 and 165, to get

466 = 165 x 2 + 136

Step 2: Since the reminder 165 ≠ 0, we apply division lemma to 136 and 165, to get

165 = 136 x 1 + 29

Step 3: We consider the new divisor 136 and the new remainder 29, and apply the division lemma to get

136 = 29 x 4 + 20

We consider the new divisor 29 and the new remainder 20,and apply the division lemma to get

29 = 20 x 1 + 9

We consider the new divisor 20 and the new remainder 9,and apply the division lemma to get

20 = 9 x 2 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 466 and 165 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(20,9) = HCF(29,20) = HCF(136,29) = HCF(165,136) = HCF(466,165) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 353 > 1, we apply the division lemma to 353 and 1, to get

353 = 1 x 353 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 353 is 1

Notice that 1 = HCF(353,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 120 > 1, we apply the division lemma to 120 and 1, to get

120 = 1 x 120 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 120 is 1

Notice that 1 = HCF(120,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 466, 165, 353, 120 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 466, 165, 353, 120?

Answer: HCF of 466, 165, 353, 120 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 466, 165, 353, 120 using Euclid's Algorithm?

Answer: For arbitrary numbers 466, 165, 353, 120 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.