Highest Common Factor of 468, 302, 924 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 468, 302, 924 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 468, 302, 924 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 468, 302, 924 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 468, 302, 924 is 2.

HCF(468, 302, 924) = 2

HCF of 468, 302, 924 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 468, 302, 924 is 2.

Highest Common Factor of 468,302,924 using Euclid's algorithm

Highest Common Factor of 468,302,924 is 2

Step 1: Since 468 > 302, we apply the division lemma to 468 and 302, to get

468 = 302 x 1 + 166

Step 2: Since the reminder 302 ≠ 0, we apply division lemma to 166 and 302, to get

302 = 166 x 1 + 136

Step 3: We consider the new divisor 166 and the new remainder 136, and apply the division lemma to get

166 = 136 x 1 + 30

We consider the new divisor 136 and the new remainder 30,and apply the division lemma to get

136 = 30 x 4 + 16

We consider the new divisor 30 and the new remainder 16,and apply the division lemma to get

30 = 16 x 1 + 14

We consider the new divisor 16 and the new remainder 14,and apply the division lemma to get

16 = 14 x 1 + 2

We consider the new divisor 14 and the new remainder 2,and apply the division lemma to get

14 = 2 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 468 and 302 is 2

Notice that 2 = HCF(14,2) = HCF(16,14) = HCF(30,16) = HCF(136,30) = HCF(166,136) = HCF(302,166) = HCF(468,302) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 924 > 2, we apply the division lemma to 924 and 2, to get

924 = 2 x 462 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 924 is 2

Notice that 2 = HCF(924,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 468, 302, 924 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 468, 302, 924?

Answer: HCF of 468, 302, 924 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 468, 302, 924 using Euclid's Algorithm?

Answer: For arbitrary numbers 468, 302, 924 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.