Highest Common Factor of 469, 4418, 8790 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 469, 4418, 8790 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 469, 4418, 8790 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 469, 4418, 8790 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 469, 4418, 8790 is 1.

HCF(469, 4418, 8790) = 1

HCF of 469, 4418, 8790 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 469, 4418, 8790 is 1.

Highest Common Factor of 469,4418,8790 using Euclid's algorithm

Highest Common Factor of 469,4418,8790 is 1

Step 1: Since 4418 > 469, we apply the division lemma to 4418 and 469, to get

4418 = 469 x 9 + 197

Step 2: Since the reminder 469 ≠ 0, we apply division lemma to 197 and 469, to get

469 = 197 x 2 + 75

Step 3: We consider the new divisor 197 and the new remainder 75, and apply the division lemma to get

197 = 75 x 2 + 47

We consider the new divisor 75 and the new remainder 47,and apply the division lemma to get

75 = 47 x 1 + 28

We consider the new divisor 47 and the new remainder 28,and apply the division lemma to get

47 = 28 x 1 + 19

We consider the new divisor 28 and the new remainder 19,and apply the division lemma to get

28 = 19 x 1 + 9

We consider the new divisor 19 and the new remainder 9,and apply the division lemma to get

19 = 9 x 2 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 469 and 4418 is 1

Notice that 1 = HCF(9,1) = HCF(19,9) = HCF(28,19) = HCF(47,28) = HCF(75,47) = HCF(197,75) = HCF(469,197) = HCF(4418,469) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 8790 > 1, we apply the division lemma to 8790 and 1, to get

8790 = 1 x 8790 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 8790 is 1

Notice that 1 = HCF(8790,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 469, 4418, 8790 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 469, 4418, 8790?

Answer: HCF of 469, 4418, 8790 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 469, 4418, 8790 using Euclid's Algorithm?

Answer: For arbitrary numbers 469, 4418, 8790 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.