Highest Common Factor of 472, 716, 906, 794 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 472, 716, 906, 794 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 472, 716, 906, 794 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 472, 716, 906, 794 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 472, 716, 906, 794 is 2.

HCF(472, 716, 906, 794) = 2

HCF of 472, 716, 906, 794 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 472, 716, 906, 794 is 2.

Highest Common Factor of 472,716,906,794 using Euclid's algorithm

Highest Common Factor of 472,716,906,794 is 2

Step 1: Since 716 > 472, we apply the division lemma to 716 and 472, to get

716 = 472 x 1 + 244

Step 2: Since the reminder 472 ≠ 0, we apply division lemma to 244 and 472, to get

472 = 244 x 1 + 228

Step 3: We consider the new divisor 244 and the new remainder 228, and apply the division lemma to get

244 = 228 x 1 + 16

We consider the new divisor 228 and the new remainder 16,and apply the division lemma to get

228 = 16 x 14 + 4

We consider the new divisor 16 and the new remainder 4,and apply the division lemma to get

16 = 4 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 472 and 716 is 4

Notice that 4 = HCF(16,4) = HCF(228,16) = HCF(244,228) = HCF(472,244) = HCF(716,472) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 906 > 4, we apply the division lemma to 906 and 4, to get

906 = 4 x 226 + 2

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 2 and 4, to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 4 and 906 is 2

Notice that 2 = HCF(4,2) = HCF(906,4) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 794 > 2, we apply the division lemma to 794 and 2, to get

794 = 2 x 397 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 794 is 2

Notice that 2 = HCF(794,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 472, 716, 906, 794 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 472, 716, 906, 794?

Answer: HCF of 472, 716, 906, 794 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 472, 716, 906, 794 using Euclid's Algorithm?

Answer: For arbitrary numbers 472, 716, 906, 794 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.