Highest Common Factor of 473, 181 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 473, 181 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 473, 181 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 473, 181 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 473, 181 is 1.

HCF(473, 181) = 1

HCF of 473, 181 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 473, 181 is 1.

Highest Common Factor of 473,181 using Euclid's algorithm

Highest Common Factor of 473,181 is 1

Step 1: Since 473 > 181, we apply the division lemma to 473 and 181, to get

473 = 181 x 2 + 111

Step 2: Since the reminder 181 ≠ 0, we apply division lemma to 111 and 181, to get

181 = 111 x 1 + 70

Step 3: We consider the new divisor 111 and the new remainder 70, and apply the division lemma to get

111 = 70 x 1 + 41

We consider the new divisor 70 and the new remainder 41,and apply the division lemma to get

70 = 41 x 1 + 29

We consider the new divisor 41 and the new remainder 29,and apply the division lemma to get

41 = 29 x 1 + 12

We consider the new divisor 29 and the new remainder 12,and apply the division lemma to get

29 = 12 x 2 + 5

We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 473 and 181 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(29,12) = HCF(41,29) = HCF(70,41) = HCF(111,70) = HCF(181,111) = HCF(473,181) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 473, 181 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 473, 181?

Answer: HCF of 473, 181 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 473, 181 using Euclid's Algorithm?

Answer: For arbitrary numbers 473, 181 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.