Highest Common Factor of 473, 840 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 473, 840 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 473, 840 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 473, 840 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 473, 840 is 1.

HCF(473, 840) = 1

HCF of 473, 840 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 473, 840 is 1.

Highest Common Factor of 473,840 using Euclid's algorithm

Highest Common Factor of 473,840 is 1

Step 1: Since 840 > 473, we apply the division lemma to 840 and 473, to get

840 = 473 x 1 + 367

Step 2: Since the reminder 473 ≠ 0, we apply division lemma to 367 and 473, to get

473 = 367 x 1 + 106

Step 3: We consider the new divisor 367 and the new remainder 106, and apply the division lemma to get

367 = 106 x 3 + 49

We consider the new divisor 106 and the new remainder 49,and apply the division lemma to get

106 = 49 x 2 + 8

We consider the new divisor 49 and the new remainder 8,and apply the division lemma to get

49 = 8 x 6 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 473 and 840 is 1

Notice that 1 = HCF(8,1) = HCF(49,8) = HCF(106,49) = HCF(367,106) = HCF(473,367) = HCF(840,473) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 473, 840 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 473, 840?

Answer: HCF of 473, 840 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 473, 840 using Euclid's Algorithm?

Answer: For arbitrary numbers 473, 840 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.