Highest Common Factor of 4744, 3501 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4744, 3501 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4744, 3501 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4744, 3501 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4744, 3501 is 1.

HCF(4744, 3501) = 1

HCF of 4744, 3501 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4744, 3501 is 1.

Highest Common Factor of 4744,3501 using Euclid's algorithm

Highest Common Factor of 4744,3501 is 1

Step 1: Since 4744 > 3501, we apply the division lemma to 4744 and 3501, to get

4744 = 3501 x 1 + 1243

Step 2: Since the reminder 3501 ≠ 0, we apply division lemma to 1243 and 3501, to get

3501 = 1243 x 2 + 1015

Step 3: We consider the new divisor 1243 and the new remainder 1015, and apply the division lemma to get

1243 = 1015 x 1 + 228

We consider the new divisor 1015 and the new remainder 228,and apply the division lemma to get

1015 = 228 x 4 + 103

We consider the new divisor 228 and the new remainder 103,and apply the division lemma to get

228 = 103 x 2 + 22

We consider the new divisor 103 and the new remainder 22,and apply the division lemma to get

103 = 22 x 4 + 15

We consider the new divisor 22 and the new remainder 15,and apply the division lemma to get

22 = 15 x 1 + 7

We consider the new divisor 15 and the new remainder 7,and apply the division lemma to get

15 = 7 x 2 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4744 and 3501 is 1

Notice that 1 = HCF(7,1) = HCF(15,7) = HCF(22,15) = HCF(103,22) = HCF(228,103) = HCF(1015,228) = HCF(1243,1015) = HCF(3501,1243) = HCF(4744,3501) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4744, 3501 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4744, 3501?

Answer: HCF of 4744, 3501 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4744, 3501 using Euclid's Algorithm?

Answer: For arbitrary numbers 4744, 3501 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.