Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 475, 746, 507 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 475, 746, 507 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 475, 746, 507 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 475, 746, 507 is 1.
HCF(475, 746, 507) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 475, 746, 507 is 1.
Step 1: Since 746 > 475, we apply the division lemma to 746 and 475, to get
746 = 475 x 1 + 271
Step 2: Since the reminder 475 ≠ 0, we apply division lemma to 271 and 475, to get
475 = 271 x 1 + 204
Step 3: We consider the new divisor 271 and the new remainder 204, and apply the division lemma to get
271 = 204 x 1 + 67
We consider the new divisor 204 and the new remainder 67,and apply the division lemma to get
204 = 67 x 3 + 3
We consider the new divisor 67 and the new remainder 3,and apply the division lemma to get
67 = 3 x 22 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 475 and 746 is 1
Notice that 1 = HCF(3,1) = HCF(67,3) = HCF(204,67) = HCF(271,204) = HCF(475,271) = HCF(746,475) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 507 > 1, we apply the division lemma to 507 and 1, to get
507 = 1 x 507 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 507 is 1
Notice that 1 = HCF(507,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 475, 746, 507?
Answer: HCF of 475, 746, 507 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 475, 746, 507 using Euclid's Algorithm?
Answer: For arbitrary numbers 475, 746, 507 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.