Highest Common Factor of 479, 660, 76 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 479, 660, 76 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 479, 660, 76 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 479, 660, 76 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 479, 660, 76 is 1.

HCF(479, 660, 76) = 1

HCF of 479, 660, 76 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 479, 660, 76 is 1.

Highest Common Factor of 479,660,76 using Euclid's algorithm

Highest Common Factor of 479,660,76 is 1

Step 1: Since 660 > 479, we apply the division lemma to 660 and 479, to get

660 = 479 x 1 + 181

Step 2: Since the reminder 479 ≠ 0, we apply division lemma to 181 and 479, to get

479 = 181 x 2 + 117

Step 3: We consider the new divisor 181 and the new remainder 117, and apply the division lemma to get

181 = 117 x 1 + 64

We consider the new divisor 117 and the new remainder 64,and apply the division lemma to get

117 = 64 x 1 + 53

We consider the new divisor 64 and the new remainder 53,and apply the division lemma to get

64 = 53 x 1 + 11

We consider the new divisor 53 and the new remainder 11,and apply the division lemma to get

53 = 11 x 4 + 9

We consider the new divisor 11 and the new remainder 9,and apply the division lemma to get

11 = 9 x 1 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 479 and 660 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(11,9) = HCF(53,11) = HCF(64,53) = HCF(117,64) = HCF(181,117) = HCF(479,181) = HCF(660,479) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 76 > 1, we apply the division lemma to 76 and 1, to get

76 = 1 x 76 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 76 is 1

Notice that 1 = HCF(76,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 479, 660, 76 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 479, 660, 76?

Answer: HCF of 479, 660, 76 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 479, 660, 76 using Euclid's Algorithm?

Answer: For arbitrary numbers 479, 660, 76 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.