Highest Common Factor of 481, 4199, 3791 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 481, 4199, 3791 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 481, 4199, 3791 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 481, 4199, 3791 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 481, 4199, 3791 is 1.

HCF(481, 4199, 3791) = 1

HCF of 481, 4199, 3791 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 481, 4199, 3791 is 1.

Highest Common Factor of 481,4199,3791 using Euclid's algorithm

Highest Common Factor of 481,4199,3791 is 1

Step 1: Since 4199 > 481, we apply the division lemma to 4199 and 481, to get

4199 = 481 x 8 + 351

Step 2: Since the reminder 481 ≠ 0, we apply division lemma to 351 and 481, to get

481 = 351 x 1 + 130

Step 3: We consider the new divisor 351 and the new remainder 130, and apply the division lemma to get

351 = 130 x 2 + 91

We consider the new divisor 130 and the new remainder 91,and apply the division lemma to get

130 = 91 x 1 + 39

We consider the new divisor 91 and the new remainder 39,and apply the division lemma to get

91 = 39 x 2 + 13

We consider the new divisor 39 and the new remainder 13,and apply the division lemma to get

39 = 13 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 13, the HCF of 481 and 4199 is 13

Notice that 13 = HCF(39,13) = HCF(91,39) = HCF(130,91) = HCF(351,130) = HCF(481,351) = HCF(4199,481) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 3791 > 13, we apply the division lemma to 3791 and 13, to get

3791 = 13 x 291 + 8

Step 2: Since the reminder 13 ≠ 0, we apply division lemma to 8 and 13, to get

13 = 8 x 1 + 5

Step 3: We consider the new divisor 8 and the new remainder 5, and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 13 and 3791 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(13,8) = HCF(3791,13) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 481, 4199, 3791 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 481, 4199, 3791?

Answer: HCF of 481, 4199, 3791 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 481, 4199, 3791 using Euclid's Algorithm?

Answer: For arbitrary numbers 481, 4199, 3791 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.