Highest Common Factor of 481, 669, 926 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 481, 669, 926 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 481, 669, 926 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 481, 669, 926 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 481, 669, 926 is 1.

HCF(481, 669, 926) = 1

HCF of 481, 669, 926 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 481, 669, 926 is 1.

Highest Common Factor of 481,669,926 using Euclid's algorithm

Highest Common Factor of 481,669,926 is 1

Step 1: Since 669 > 481, we apply the division lemma to 669 and 481, to get

669 = 481 x 1 + 188

Step 2: Since the reminder 481 ≠ 0, we apply division lemma to 188 and 481, to get

481 = 188 x 2 + 105

Step 3: We consider the new divisor 188 and the new remainder 105, and apply the division lemma to get

188 = 105 x 1 + 83

We consider the new divisor 105 and the new remainder 83,and apply the division lemma to get

105 = 83 x 1 + 22

We consider the new divisor 83 and the new remainder 22,and apply the division lemma to get

83 = 22 x 3 + 17

We consider the new divisor 22 and the new remainder 17,and apply the division lemma to get

22 = 17 x 1 + 5

We consider the new divisor 17 and the new remainder 5,and apply the division lemma to get

17 = 5 x 3 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 481 and 669 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(17,5) = HCF(22,17) = HCF(83,22) = HCF(105,83) = HCF(188,105) = HCF(481,188) = HCF(669,481) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 926 > 1, we apply the division lemma to 926 and 1, to get

926 = 1 x 926 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 926 is 1

Notice that 1 = HCF(926,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 481, 669, 926 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 481, 669, 926?

Answer: HCF of 481, 669, 926 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 481, 669, 926 using Euclid's Algorithm?

Answer: For arbitrary numbers 481, 669, 926 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.