Highest Common Factor of 481, 783, 71 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 481, 783, 71 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 481, 783, 71 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 481, 783, 71 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 481, 783, 71 is 1.

HCF(481, 783, 71) = 1

HCF of 481, 783, 71 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 481, 783, 71 is 1.

Highest Common Factor of 481,783,71 using Euclid's algorithm

Highest Common Factor of 481,783,71 is 1

Step 1: Since 783 > 481, we apply the division lemma to 783 and 481, to get

783 = 481 x 1 + 302

Step 2: Since the reminder 481 ≠ 0, we apply division lemma to 302 and 481, to get

481 = 302 x 1 + 179

Step 3: We consider the new divisor 302 and the new remainder 179, and apply the division lemma to get

302 = 179 x 1 + 123

We consider the new divisor 179 and the new remainder 123,and apply the division lemma to get

179 = 123 x 1 + 56

We consider the new divisor 123 and the new remainder 56,and apply the division lemma to get

123 = 56 x 2 + 11

We consider the new divisor 56 and the new remainder 11,and apply the division lemma to get

56 = 11 x 5 + 1

We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 481 and 783 is 1

Notice that 1 = HCF(11,1) = HCF(56,11) = HCF(123,56) = HCF(179,123) = HCF(302,179) = HCF(481,302) = HCF(783,481) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 71 > 1, we apply the division lemma to 71 and 1, to get

71 = 1 x 71 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 71 is 1

Notice that 1 = HCF(71,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 481, 783, 71 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 481, 783, 71?

Answer: HCF of 481, 783, 71 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 481, 783, 71 using Euclid's Algorithm?

Answer: For arbitrary numbers 481, 783, 71 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.