Highest Common Factor of 483, 7141 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 483, 7141 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 483, 7141 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 483, 7141 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 483, 7141 is 1.

HCF(483, 7141) = 1

HCF of 483, 7141 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 483, 7141 is 1.

Highest Common Factor of 483,7141 using Euclid's algorithm

Highest Common Factor of 483,7141 is 1

Step 1: Since 7141 > 483, we apply the division lemma to 7141 and 483, to get

7141 = 483 x 14 + 379

Step 2: Since the reminder 483 ≠ 0, we apply division lemma to 379 and 483, to get

483 = 379 x 1 + 104

Step 3: We consider the new divisor 379 and the new remainder 104, and apply the division lemma to get

379 = 104 x 3 + 67

We consider the new divisor 104 and the new remainder 67,and apply the division lemma to get

104 = 67 x 1 + 37

We consider the new divisor 67 and the new remainder 37,and apply the division lemma to get

67 = 37 x 1 + 30

We consider the new divisor 37 and the new remainder 30,and apply the division lemma to get

37 = 30 x 1 + 7

We consider the new divisor 30 and the new remainder 7,and apply the division lemma to get

30 = 7 x 4 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 483 and 7141 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(30,7) = HCF(37,30) = HCF(67,37) = HCF(104,67) = HCF(379,104) = HCF(483,379) = HCF(7141,483) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 483, 7141 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 483, 7141?

Answer: HCF of 483, 7141 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 483, 7141 using Euclid's Algorithm?

Answer: For arbitrary numbers 483, 7141 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.