Highest Common Factor of 483, 788, 544 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 483, 788, 544 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 483, 788, 544 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 483, 788, 544 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 483, 788, 544 is 1.

HCF(483, 788, 544) = 1

HCF of 483, 788, 544 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 483, 788, 544 is 1.

Highest Common Factor of 483,788,544 using Euclid's algorithm

Highest Common Factor of 483,788,544 is 1

Step 1: Since 788 > 483, we apply the division lemma to 788 and 483, to get

788 = 483 x 1 + 305

Step 2: Since the reminder 483 ≠ 0, we apply division lemma to 305 and 483, to get

483 = 305 x 1 + 178

Step 3: We consider the new divisor 305 and the new remainder 178, and apply the division lemma to get

305 = 178 x 1 + 127

We consider the new divisor 178 and the new remainder 127,and apply the division lemma to get

178 = 127 x 1 + 51

We consider the new divisor 127 and the new remainder 51,and apply the division lemma to get

127 = 51 x 2 + 25

We consider the new divisor 51 and the new remainder 25,and apply the division lemma to get

51 = 25 x 2 + 1

We consider the new divisor 25 and the new remainder 1,and apply the division lemma to get

25 = 1 x 25 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 483 and 788 is 1

Notice that 1 = HCF(25,1) = HCF(51,25) = HCF(127,51) = HCF(178,127) = HCF(305,178) = HCF(483,305) = HCF(788,483) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 544 > 1, we apply the division lemma to 544 and 1, to get

544 = 1 x 544 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 544 is 1

Notice that 1 = HCF(544,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 483, 788, 544 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 483, 788, 544?

Answer: HCF of 483, 788, 544 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 483, 788, 544 using Euclid's Algorithm?

Answer: For arbitrary numbers 483, 788, 544 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.