Highest Common Factor of 483, 904, 903, 848 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 483, 904, 903, 848 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 483, 904, 903, 848 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 483, 904, 903, 848 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 483, 904, 903, 848 is 1.

HCF(483, 904, 903, 848) = 1

HCF of 483, 904, 903, 848 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 483, 904, 903, 848 is 1.

Highest Common Factor of 483,904,903,848 using Euclid's algorithm

Highest Common Factor of 483,904,903,848 is 1

Step 1: Since 904 > 483, we apply the division lemma to 904 and 483, to get

904 = 483 x 1 + 421

Step 2: Since the reminder 483 ≠ 0, we apply division lemma to 421 and 483, to get

483 = 421 x 1 + 62

Step 3: We consider the new divisor 421 and the new remainder 62, and apply the division lemma to get

421 = 62 x 6 + 49

We consider the new divisor 62 and the new remainder 49,and apply the division lemma to get

62 = 49 x 1 + 13

We consider the new divisor 49 and the new remainder 13,and apply the division lemma to get

49 = 13 x 3 + 10

We consider the new divisor 13 and the new remainder 10,and apply the division lemma to get

13 = 10 x 1 + 3

We consider the new divisor 10 and the new remainder 3,and apply the division lemma to get

10 = 3 x 3 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 483 and 904 is 1

Notice that 1 = HCF(3,1) = HCF(10,3) = HCF(13,10) = HCF(49,13) = HCF(62,49) = HCF(421,62) = HCF(483,421) = HCF(904,483) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 903 > 1, we apply the division lemma to 903 and 1, to get

903 = 1 x 903 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 903 is 1

Notice that 1 = HCF(903,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 848 > 1, we apply the division lemma to 848 and 1, to get

848 = 1 x 848 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 848 is 1

Notice that 1 = HCF(848,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 483, 904, 903, 848 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 483, 904, 903, 848?

Answer: HCF of 483, 904, 903, 848 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 483, 904, 903, 848 using Euclid's Algorithm?

Answer: For arbitrary numbers 483, 904, 903, 848 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.