Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 483, 904, 903, 848 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 483, 904, 903, 848 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 483, 904, 903, 848 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 483, 904, 903, 848 is 1.
HCF(483, 904, 903, 848) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 483, 904, 903, 848 is 1.
Step 1: Since 904 > 483, we apply the division lemma to 904 and 483, to get
904 = 483 x 1 + 421
Step 2: Since the reminder 483 ≠ 0, we apply division lemma to 421 and 483, to get
483 = 421 x 1 + 62
Step 3: We consider the new divisor 421 and the new remainder 62, and apply the division lemma to get
421 = 62 x 6 + 49
We consider the new divisor 62 and the new remainder 49,and apply the division lemma to get
62 = 49 x 1 + 13
We consider the new divisor 49 and the new remainder 13,and apply the division lemma to get
49 = 13 x 3 + 10
We consider the new divisor 13 and the new remainder 10,and apply the division lemma to get
13 = 10 x 1 + 3
We consider the new divisor 10 and the new remainder 3,and apply the division lemma to get
10 = 3 x 3 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 483 and 904 is 1
Notice that 1 = HCF(3,1) = HCF(10,3) = HCF(13,10) = HCF(49,13) = HCF(62,49) = HCF(421,62) = HCF(483,421) = HCF(904,483) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 903 > 1, we apply the division lemma to 903 and 1, to get
903 = 1 x 903 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 903 is 1
Notice that 1 = HCF(903,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 848 > 1, we apply the division lemma to 848 and 1, to get
848 = 1 x 848 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 848 is 1
Notice that 1 = HCF(848,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 483, 904, 903, 848?
Answer: HCF of 483, 904, 903, 848 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 483, 904, 903, 848 using Euclid's Algorithm?
Answer: For arbitrary numbers 483, 904, 903, 848 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.