Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4836, 3284 i.e. 4 the largest integer that leaves a remainder zero for all numbers.
HCF of 4836, 3284 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 4836, 3284 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 4836, 3284 is 4.
HCF(4836, 3284) = 4
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 4836, 3284 is 4.
Step 1: Since 4836 > 3284, we apply the division lemma to 4836 and 3284, to get
4836 = 3284 x 1 + 1552
Step 2: Since the reminder 3284 ≠ 0, we apply division lemma to 1552 and 3284, to get
3284 = 1552 x 2 + 180
Step 3: We consider the new divisor 1552 and the new remainder 180, and apply the division lemma to get
1552 = 180 x 8 + 112
We consider the new divisor 180 and the new remainder 112,and apply the division lemma to get
180 = 112 x 1 + 68
We consider the new divisor 112 and the new remainder 68,and apply the division lemma to get
112 = 68 x 1 + 44
We consider the new divisor 68 and the new remainder 44,and apply the division lemma to get
68 = 44 x 1 + 24
We consider the new divisor 44 and the new remainder 24,and apply the division lemma to get
44 = 24 x 1 + 20
We consider the new divisor 24 and the new remainder 20,and apply the division lemma to get
24 = 20 x 1 + 4
We consider the new divisor 20 and the new remainder 4,and apply the division lemma to get
20 = 4 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 4836 and 3284 is 4
Notice that 4 = HCF(20,4) = HCF(24,20) = HCF(44,24) = HCF(68,44) = HCF(112,68) = HCF(180,112) = HCF(1552,180) = HCF(3284,1552) = HCF(4836,3284) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 4836, 3284?
Answer: HCF of 4836, 3284 is 4 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 4836, 3284 using Euclid's Algorithm?
Answer: For arbitrary numbers 4836, 3284 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.