Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4837, 5697 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 4837, 5697 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 4837, 5697 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 4837, 5697 is 1.
HCF(4837, 5697) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 4837, 5697 is 1.
Step 1: Since 5697 > 4837, we apply the division lemma to 5697 and 4837, to get
5697 = 4837 x 1 + 860
Step 2: Since the reminder 4837 ≠ 0, we apply division lemma to 860 and 4837, to get
4837 = 860 x 5 + 537
Step 3: We consider the new divisor 860 and the new remainder 537, and apply the division lemma to get
860 = 537 x 1 + 323
We consider the new divisor 537 and the new remainder 323,and apply the division lemma to get
537 = 323 x 1 + 214
We consider the new divisor 323 and the new remainder 214,and apply the division lemma to get
323 = 214 x 1 + 109
We consider the new divisor 214 and the new remainder 109,and apply the division lemma to get
214 = 109 x 1 + 105
We consider the new divisor 109 and the new remainder 105,and apply the division lemma to get
109 = 105 x 1 + 4
We consider the new divisor 105 and the new remainder 4,and apply the division lemma to get
105 = 4 x 26 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4837 and 5697 is 1
Notice that 1 = HCF(4,1) = HCF(105,4) = HCF(109,105) = HCF(214,109) = HCF(323,214) = HCF(537,323) = HCF(860,537) = HCF(4837,860) = HCF(5697,4837) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 4837, 5697?
Answer: HCF of 4837, 5697 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 4837, 5697 using Euclid's Algorithm?
Answer: For arbitrary numbers 4837, 5697 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.