Highest Common Factor of 484, 785, 174 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 484, 785, 174 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 484, 785, 174 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 484, 785, 174 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 484, 785, 174 is 1.

HCF(484, 785, 174) = 1

HCF of 484, 785, 174 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 484, 785, 174 is 1.

Highest Common Factor of 484,785,174 using Euclid's algorithm

Highest Common Factor of 484,785,174 is 1

Step 1: Since 785 > 484, we apply the division lemma to 785 and 484, to get

785 = 484 x 1 + 301

Step 2: Since the reminder 484 ≠ 0, we apply division lemma to 301 and 484, to get

484 = 301 x 1 + 183

Step 3: We consider the new divisor 301 and the new remainder 183, and apply the division lemma to get

301 = 183 x 1 + 118

We consider the new divisor 183 and the new remainder 118,and apply the division lemma to get

183 = 118 x 1 + 65

We consider the new divisor 118 and the new remainder 65,and apply the division lemma to get

118 = 65 x 1 + 53

We consider the new divisor 65 and the new remainder 53,and apply the division lemma to get

65 = 53 x 1 + 12

We consider the new divisor 53 and the new remainder 12,and apply the division lemma to get

53 = 12 x 4 + 5

We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 484 and 785 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(53,12) = HCF(65,53) = HCF(118,65) = HCF(183,118) = HCF(301,183) = HCF(484,301) = HCF(785,484) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 174 > 1, we apply the division lemma to 174 and 1, to get

174 = 1 x 174 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 174 is 1

Notice that 1 = HCF(174,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 484, 785, 174 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 484, 785, 174?

Answer: HCF of 484, 785, 174 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 484, 785, 174 using Euclid's Algorithm?

Answer: For arbitrary numbers 484, 785, 174 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.