Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4847, 2132, 64449 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 4847, 2132, 64449 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 4847, 2132, 64449 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 4847, 2132, 64449 is 1.
HCF(4847, 2132, 64449) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 4847, 2132, 64449 is 1.
Step 1: Since 4847 > 2132, we apply the division lemma to 4847 and 2132, to get
4847 = 2132 x 2 + 583
Step 2: Since the reminder 2132 ≠ 0, we apply division lemma to 583 and 2132, to get
2132 = 583 x 3 + 383
Step 3: We consider the new divisor 583 and the new remainder 383, and apply the division lemma to get
583 = 383 x 1 + 200
We consider the new divisor 383 and the new remainder 200,and apply the division lemma to get
383 = 200 x 1 + 183
We consider the new divisor 200 and the new remainder 183,and apply the division lemma to get
200 = 183 x 1 + 17
We consider the new divisor 183 and the new remainder 17,and apply the division lemma to get
183 = 17 x 10 + 13
We consider the new divisor 17 and the new remainder 13,and apply the division lemma to get
17 = 13 x 1 + 4
We consider the new divisor 13 and the new remainder 4,and apply the division lemma to get
13 = 4 x 3 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4847 and 2132 is 1
Notice that 1 = HCF(4,1) = HCF(13,4) = HCF(17,13) = HCF(183,17) = HCF(200,183) = HCF(383,200) = HCF(583,383) = HCF(2132,583) = HCF(4847,2132) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 64449 > 1, we apply the division lemma to 64449 and 1, to get
64449 = 1 x 64449 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 64449 is 1
Notice that 1 = HCF(64449,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 4847, 2132, 64449?
Answer: HCF of 4847, 2132, 64449 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 4847, 2132, 64449 using Euclid's Algorithm?
Answer: For arbitrary numbers 4847, 2132, 64449 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.