Highest Common Factor of 488, 107, 940, 139 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 488, 107, 940, 139 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 488, 107, 940, 139 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 488, 107, 940, 139 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 488, 107, 940, 139 is 1.

HCF(488, 107, 940, 139) = 1

HCF of 488, 107, 940, 139 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 488, 107, 940, 139 is 1.

Highest Common Factor of 488,107,940,139 using Euclid's algorithm

Highest Common Factor of 488,107,940,139 is 1

Step 1: Since 488 > 107, we apply the division lemma to 488 and 107, to get

488 = 107 x 4 + 60

Step 2: Since the reminder 107 ≠ 0, we apply division lemma to 60 and 107, to get

107 = 60 x 1 + 47

Step 3: We consider the new divisor 60 and the new remainder 47, and apply the division lemma to get

60 = 47 x 1 + 13

We consider the new divisor 47 and the new remainder 13,and apply the division lemma to get

47 = 13 x 3 + 8

We consider the new divisor 13 and the new remainder 8,and apply the division lemma to get

13 = 8 x 1 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 488 and 107 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(13,8) = HCF(47,13) = HCF(60,47) = HCF(107,60) = HCF(488,107) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 940 > 1, we apply the division lemma to 940 and 1, to get

940 = 1 x 940 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 940 is 1

Notice that 1 = HCF(940,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 139 > 1, we apply the division lemma to 139 and 1, to get

139 = 1 x 139 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 139 is 1

Notice that 1 = HCF(139,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 488, 107, 940, 139 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 488, 107, 940, 139?

Answer: HCF of 488, 107, 940, 139 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 488, 107, 940, 139 using Euclid's Algorithm?

Answer: For arbitrary numbers 488, 107, 940, 139 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.