Highest Common Factor of 488, 383, 278 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 488, 383, 278 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 488, 383, 278 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 488, 383, 278 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 488, 383, 278 is 1.

HCF(488, 383, 278) = 1

HCF of 488, 383, 278 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 488, 383, 278 is 1.

Highest Common Factor of 488,383,278 using Euclid's algorithm

Highest Common Factor of 488,383,278 is 1

Step 1: Since 488 > 383, we apply the division lemma to 488 and 383, to get

488 = 383 x 1 + 105

Step 2: Since the reminder 383 ≠ 0, we apply division lemma to 105 and 383, to get

383 = 105 x 3 + 68

Step 3: We consider the new divisor 105 and the new remainder 68, and apply the division lemma to get

105 = 68 x 1 + 37

We consider the new divisor 68 and the new remainder 37,and apply the division lemma to get

68 = 37 x 1 + 31

We consider the new divisor 37 and the new remainder 31,and apply the division lemma to get

37 = 31 x 1 + 6

We consider the new divisor 31 and the new remainder 6,and apply the division lemma to get

31 = 6 x 5 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 488 and 383 is 1

Notice that 1 = HCF(6,1) = HCF(31,6) = HCF(37,31) = HCF(68,37) = HCF(105,68) = HCF(383,105) = HCF(488,383) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 278 > 1, we apply the division lemma to 278 and 1, to get

278 = 1 x 278 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 278 is 1

Notice that 1 = HCF(278,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 488, 383, 278 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 488, 383, 278?

Answer: HCF of 488, 383, 278 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 488, 383, 278 using Euclid's Algorithm?

Answer: For arbitrary numbers 488, 383, 278 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.