Highest Common Factor of 488, 859, 812 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 488, 859, 812 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 488, 859, 812 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 488, 859, 812 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 488, 859, 812 is 1.

HCF(488, 859, 812) = 1

HCF of 488, 859, 812 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 488, 859, 812 is 1.

Highest Common Factor of 488,859,812 using Euclid's algorithm

Highest Common Factor of 488,859,812 is 1

Step 1: Since 859 > 488, we apply the division lemma to 859 and 488, to get

859 = 488 x 1 + 371

Step 2: Since the reminder 488 ≠ 0, we apply division lemma to 371 and 488, to get

488 = 371 x 1 + 117

Step 3: We consider the new divisor 371 and the new remainder 117, and apply the division lemma to get

371 = 117 x 3 + 20

We consider the new divisor 117 and the new remainder 20,and apply the division lemma to get

117 = 20 x 5 + 17

We consider the new divisor 20 and the new remainder 17,and apply the division lemma to get

20 = 17 x 1 + 3

We consider the new divisor 17 and the new remainder 3,and apply the division lemma to get

17 = 3 x 5 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 488 and 859 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(17,3) = HCF(20,17) = HCF(117,20) = HCF(371,117) = HCF(488,371) = HCF(859,488) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 812 > 1, we apply the division lemma to 812 and 1, to get

812 = 1 x 812 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 812 is 1

Notice that 1 = HCF(812,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 488, 859, 812 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 488, 859, 812?

Answer: HCF of 488, 859, 812 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 488, 859, 812 using Euclid's Algorithm?

Answer: For arbitrary numbers 488, 859, 812 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.