Highest Common Factor of 489, 563, 168, 596 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 489, 563, 168, 596 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 489, 563, 168, 596 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 489, 563, 168, 596 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 489, 563, 168, 596 is 1.

HCF(489, 563, 168, 596) = 1

HCF of 489, 563, 168, 596 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 489, 563, 168, 596 is 1.

Highest Common Factor of 489,563,168,596 using Euclid's algorithm

Highest Common Factor of 489,563,168,596 is 1

Step 1: Since 563 > 489, we apply the division lemma to 563 and 489, to get

563 = 489 x 1 + 74

Step 2: Since the reminder 489 ≠ 0, we apply division lemma to 74 and 489, to get

489 = 74 x 6 + 45

Step 3: We consider the new divisor 74 and the new remainder 45, and apply the division lemma to get

74 = 45 x 1 + 29

We consider the new divisor 45 and the new remainder 29,and apply the division lemma to get

45 = 29 x 1 + 16

We consider the new divisor 29 and the new remainder 16,and apply the division lemma to get

29 = 16 x 1 + 13

We consider the new divisor 16 and the new remainder 13,and apply the division lemma to get

16 = 13 x 1 + 3

We consider the new divisor 13 and the new remainder 3,and apply the division lemma to get

13 = 3 x 4 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 489 and 563 is 1

Notice that 1 = HCF(3,1) = HCF(13,3) = HCF(16,13) = HCF(29,16) = HCF(45,29) = HCF(74,45) = HCF(489,74) = HCF(563,489) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 168 > 1, we apply the division lemma to 168 and 1, to get

168 = 1 x 168 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 168 is 1

Notice that 1 = HCF(168,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 596 > 1, we apply the division lemma to 596 and 1, to get

596 = 1 x 596 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 596 is 1

Notice that 1 = HCF(596,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 489, 563, 168, 596 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 489, 563, 168, 596?

Answer: HCF of 489, 563, 168, 596 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 489, 563, 168, 596 using Euclid's Algorithm?

Answer: For arbitrary numbers 489, 563, 168, 596 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.