Highest Common Factor of 493, 861, 888 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 493, 861, 888 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 493, 861, 888 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 493, 861, 888 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 493, 861, 888 is 1.

HCF(493, 861, 888) = 1

HCF of 493, 861, 888 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 493, 861, 888 is 1.

Highest Common Factor of 493,861,888 using Euclid's algorithm

Highest Common Factor of 493,861,888 is 1

Step 1: Since 861 > 493, we apply the division lemma to 861 and 493, to get

861 = 493 x 1 + 368

Step 2: Since the reminder 493 ≠ 0, we apply division lemma to 368 and 493, to get

493 = 368 x 1 + 125

Step 3: We consider the new divisor 368 and the new remainder 125, and apply the division lemma to get

368 = 125 x 2 + 118

We consider the new divisor 125 and the new remainder 118,and apply the division lemma to get

125 = 118 x 1 + 7

We consider the new divisor 118 and the new remainder 7,and apply the division lemma to get

118 = 7 x 16 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 493 and 861 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(118,7) = HCF(125,118) = HCF(368,125) = HCF(493,368) = HCF(861,493) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 888 > 1, we apply the division lemma to 888 and 1, to get

888 = 1 x 888 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 888 is 1

Notice that 1 = HCF(888,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 493, 861, 888 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 493, 861, 888?

Answer: HCF of 493, 861, 888 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 493, 861, 888 using Euclid's Algorithm?

Answer: For arbitrary numbers 493, 861, 888 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.