Highest Common Factor of 496, 358, 789 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 496, 358, 789 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 496, 358, 789 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 496, 358, 789 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 496, 358, 789 is 1.

HCF(496, 358, 789) = 1

HCF of 496, 358, 789 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 496, 358, 789 is 1.

Highest Common Factor of 496,358,789 using Euclid's algorithm

Highest Common Factor of 496,358,789 is 1

Step 1: Since 496 > 358, we apply the division lemma to 496 and 358, to get

496 = 358 x 1 + 138

Step 2: Since the reminder 358 ≠ 0, we apply division lemma to 138 and 358, to get

358 = 138 x 2 + 82

Step 3: We consider the new divisor 138 and the new remainder 82, and apply the division lemma to get

138 = 82 x 1 + 56

We consider the new divisor 82 and the new remainder 56,and apply the division lemma to get

82 = 56 x 1 + 26

We consider the new divisor 56 and the new remainder 26,and apply the division lemma to get

56 = 26 x 2 + 4

We consider the new divisor 26 and the new remainder 4,and apply the division lemma to get

26 = 4 x 6 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 496 and 358 is 2

Notice that 2 = HCF(4,2) = HCF(26,4) = HCF(56,26) = HCF(82,56) = HCF(138,82) = HCF(358,138) = HCF(496,358) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 789 > 2, we apply the division lemma to 789 and 2, to get

789 = 2 x 394 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 789 is 1

Notice that 1 = HCF(2,1) = HCF(789,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 496, 358, 789 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 496, 358, 789?

Answer: HCF of 496, 358, 789 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 496, 358, 789 using Euclid's Algorithm?

Answer: For arbitrary numbers 496, 358, 789 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.