Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 497, 613, 703 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 497, 613, 703 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 497, 613, 703 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 497, 613, 703 is 1.
HCF(497, 613, 703) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 497, 613, 703 is 1.
Step 1: Since 613 > 497, we apply the division lemma to 613 and 497, to get
613 = 497 x 1 + 116
Step 2: Since the reminder 497 ≠ 0, we apply division lemma to 116 and 497, to get
497 = 116 x 4 + 33
Step 3: We consider the new divisor 116 and the new remainder 33, and apply the division lemma to get
116 = 33 x 3 + 17
We consider the new divisor 33 and the new remainder 17,and apply the division lemma to get
33 = 17 x 1 + 16
We consider the new divisor 17 and the new remainder 16,and apply the division lemma to get
17 = 16 x 1 + 1
We consider the new divisor 16 and the new remainder 1,and apply the division lemma to get
16 = 1 x 16 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 497 and 613 is 1
Notice that 1 = HCF(16,1) = HCF(17,16) = HCF(33,17) = HCF(116,33) = HCF(497,116) = HCF(613,497) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 703 > 1, we apply the division lemma to 703 and 1, to get
703 = 1 x 703 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 703 is 1
Notice that 1 = HCF(703,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 497, 613, 703?
Answer: HCF of 497, 613, 703 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 497, 613, 703 using Euclid's Algorithm?
Answer: For arbitrary numbers 497, 613, 703 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.