Highest Common Factor of 499, 942, 708 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 499, 942, 708 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 499, 942, 708 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 499, 942, 708 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 499, 942, 708 is 1.

HCF(499, 942, 708) = 1

HCF of 499, 942, 708 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 499, 942, 708 is 1.

Highest Common Factor of 499,942,708 using Euclid's algorithm

Highest Common Factor of 499,942,708 is 1

Step 1: Since 942 > 499, we apply the division lemma to 942 and 499, to get

942 = 499 x 1 + 443

Step 2: Since the reminder 499 ≠ 0, we apply division lemma to 443 and 499, to get

499 = 443 x 1 + 56

Step 3: We consider the new divisor 443 and the new remainder 56, and apply the division lemma to get

443 = 56 x 7 + 51

We consider the new divisor 56 and the new remainder 51,and apply the division lemma to get

56 = 51 x 1 + 5

We consider the new divisor 51 and the new remainder 5,and apply the division lemma to get

51 = 5 x 10 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 499 and 942 is 1

Notice that 1 = HCF(5,1) = HCF(51,5) = HCF(56,51) = HCF(443,56) = HCF(499,443) = HCF(942,499) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 708 > 1, we apply the division lemma to 708 and 1, to get

708 = 1 x 708 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 708 is 1

Notice that 1 = HCF(708,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 499, 942, 708 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 499, 942, 708?

Answer: HCF of 499, 942, 708 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 499, 942, 708 using Euclid's Algorithm?

Answer: For arbitrary numbers 499, 942, 708 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.