Highest Common Factor of 4992, 2069 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4992, 2069 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4992, 2069 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4992, 2069 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4992, 2069 is 1.

HCF(4992, 2069) = 1

HCF of 4992, 2069 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4992, 2069 is 1.

Highest Common Factor of 4992,2069 using Euclid's algorithm

Highest Common Factor of 4992,2069 is 1

Step 1: Since 4992 > 2069, we apply the division lemma to 4992 and 2069, to get

4992 = 2069 x 2 + 854

Step 2: Since the reminder 2069 ≠ 0, we apply division lemma to 854 and 2069, to get

2069 = 854 x 2 + 361

Step 3: We consider the new divisor 854 and the new remainder 361, and apply the division lemma to get

854 = 361 x 2 + 132

We consider the new divisor 361 and the new remainder 132,and apply the division lemma to get

361 = 132 x 2 + 97

We consider the new divisor 132 and the new remainder 97,and apply the division lemma to get

132 = 97 x 1 + 35

We consider the new divisor 97 and the new remainder 35,and apply the division lemma to get

97 = 35 x 2 + 27

We consider the new divisor 35 and the new remainder 27,and apply the division lemma to get

35 = 27 x 1 + 8

We consider the new divisor 27 and the new remainder 8,and apply the division lemma to get

27 = 8 x 3 + 3

We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get

8 = 3 x 2 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4992 and 2069 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(27,8) = HCF(35,27) = HCF(97,35) = HCF(132,97) = HCF(361,132) = HCF(854,361) = HCF(2069,854) = HCF(4992,2069) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4992, 2069 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4992, 2069?

Answer: HCF of 4992, 2069 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4992, 2069 using Euclid's Algorithm?

Answer: For arbitrary numbers 4992, 2069 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.