Highest Common Factor of 500, 863 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 500, 863 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 500, 863 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 500, 863 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 500, 863 is 1.

HCF(500, 863) = 1

HCF of 500, 863 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 500, 863 is 1.

Highest Common Factor of 500,863 using Euclid's algorithm

Highest Common Factor of 500,863 is 1

Step 1: Since 863 > 500, we apply the division lemma to 863 and 500, to get

863 = 500 x 1 + 363

Step 2: Since the reminder 500 ≠ 0, we apply division lemma to 363 and 500, to get

500 = 363 x 1 + 137

Step 3: We consider the new divisor 363 and the new remainder 137, and apply the division lemma to get

363 = 137 x 2 + 89

We consider the new divisor 137 and the new remainder 89,and apply the division lemma to get

137 = 89 x 1 + 48

We consider the new divisor 89 and the new remainder 48,and apply the division lemma to get

89 = 48 x 1 + 41

We consider the new divisor 48 and the new remainder 41,and apply the division lemma to get

48 = 41 x 1 + 7

We consider the new divisor 41 and the new remainder 7,and apply the division lemma to get

41 = 7 x 5 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 500 and 863 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(41,7) = HCF(48,41) = HCF(89,48) = HCF(137,89) = HCF(363,137) = HCF(500,363) = HCF(863,500) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 500, 863 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 500, 863?

Answer: HCF of 500, 863 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 500, 863 using Euclid's Algorithm?

Answer: For arbitrary numbers 500, 863 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.