Highest Common Factor of 501, 294, 759, 637 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 501, 294, 759, 637 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 501, 294, 759, 637 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 501, 294, 759, 637 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 501, 294, 759, 637 is 1.

HCF(501, 294, 759, 637) = 1

HCF of 501, 294, 759, 637 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 501, 294, 759, 637 is 1.

Highest Common Factor of 501,294,759,637 using Euclid's algorithm

Highest Common Factor of 501,294,759,637 is 1

Step 1: Since 501 > 294, we apply the division lemma to 501 and 294, to get

501 = 294 x 1 + 207

Step 2: Since the reminder 294 ≠ 0, we apply division lemma to 207 and 294, to get

294 = 207 x 1 + 87

Step 3: We consider the new divisor 207 and the new remainder 87, and apply the division lemma to get

207 = 87 x 2 + 33

We consider the new divisor 87 and the new remainder 33,and apply the division lemma to get

87 = 33 x 2 + 21

We consider the new divisor 33 and the new remainder 21,and apply the division lemma to get

33 = 21 x 1 + 12

We consider the new divisor 21 and the new remainder 12,and apply the division lemma to get

21 = 12 x 1 + 9

We consider the new divisor 12 and the new remainder 9,and apply the division lemma to get

12 = 9 x 1 + 3

We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get

9 = 3 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 501 and 294 is 3

Notice that 3 = HCF(9,3) = HCF(12,9) = HCF(21,12) = HCF(33,21) = HCF(87,33) = HCF(207,87) = HCF(294,207) = HCF(501,294) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 759 > 3, we apply the division lemma to 759 and 3, to get

759 = 3 x 253 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3 and 759 is 3

Notice that 3 = HCF(759,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 637 > 3, we apply the division lemma to 637 and 3, to get

637 = 3 x 212 + 1

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 637 is 1

Notice that 1 = HCF(3,1) = HCF(637,3) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 501, 294, 759, 637 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 501, 294, 759, 637?

Answer: HCF of 501, 294, 759, 637 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 501, 294, 759, 637 using Euclid's Algorithm?

Answer: For arbitrary numbers 501, 294, 759, 637 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.