Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 504, 28476 i.e. 252 the largest integer that leaves a remainder zero for all numbers.
HCF of 504, 28476 is 252 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 504, 28476 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 504, 28476 is 252.
HCF(504, 28476) = 252
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 504, 28476 is 252.
Step 1: Since 28476 > 504, we apply the division lemma to 28476 and 504, to get
28476 = 504 x 56 + 252
Step 2: Since the reminder 504 ≠ 0, we apply division lemma to 252 and 504, to get
504 = 252 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 252, the HCF of 504 and 28476 is 252
Notice that 252 = HCF(504,252) = HCF(28476,504) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 504, 28476?
Answer: HCF of 504, 28476 is 252 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 504, 28476 using Euclid's Algorithm?
Answer: For arbitrary numbers 504, 28476 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.