Highest Common Factor of 505, 3933, 4524 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 505, 3933, 4524 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 505, 3933, 4524 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 505, 3933, 4524 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 505, 3933, 4524 is 1.

HCF(505, 3933, 4524) = 1

HCF of 505, 3933, 4524 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 505, 3933, 4524 is 1.

Highest Common Factor of 505,3933,4524 using Euclid's algorithm

Highest Common Factor of 505,3933,4524 is 1

Step 1: Since 3933 > 505, we apply the division lemma to 3933 and 505, to get

3933 = 505 x 7 + 398

Step 2: Since the reminder 505 ≠ 0, we apply division lemma to 398 and 505, to get

505 = 398 x 1 + 107

Step 3: We consider the new divisor 398 and the new remainder 107, and apply the division lemma to get

398 = 107 x 3 + 77

We consider the new divisor 107 and the new remainder 77,and apply the division lemma to get

107 = 77 x 1 + 30

We consider the new divisor 77 and the new remainder 30,and apply the division lemma to get

77 = 30 x 2 + 17

We consider the new divisor 30 and the new remainder 17,and apply the division lemma to get

30 = 17 x 1 + 13

We consider the new divisor 17 and the new remainder 13,and apply the division lemma to get

17 = 13 x 1 + 4

We consider the new divisor 13 and the new remainder 4,and apply the division lemma to get

13 = 4 x 3 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 505 and 3933 is 1

Notice that 1 = HCF(4,1) = HCF(13,4) = HCF(17,13) = HCF(30,17) = HCF(77,30) = HCF(107,77) = HCF(398,107) = HCF(505,398) = HCF(3933,505) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 4524 > 1, we apply the division lemma to 4524 and 1, to get

4524 = 1 x 4524 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 4524 is 1

Notice that 1 = HCF(4524,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 505, 3933, 4524 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 505, 3933, 4524?

Answer: HCF of 505, 3933, 4524 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 505, 3933, 4524 using Euclid's Algorithm?

Answer: For arbitrary numbers 505, 3933, 4524 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.