Highest Common Factor of 509, 115, 432, 692 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 509, 115, 432, 692 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 509, 115, 432, 692 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 509, 115, 432, 692 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 509, 115, 432, 692 is 1.

HCF(509, 115, 432, 692) = 1

HCF of 509, 115, 432, 692 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 509, 115, 432, 692 is 1.

Highest Common Factor of 509,115,432,692 using Euclid's algorithm

Highest Common Factor of 509,115,432,692 is 1

Step 1: Since 509 > 115, we apply the division lemma to 509 and 115, to get

509 = 115 x 4 + 49

Step 2: Since the reminder 115 ≠ 0, we apply division lemma to 49 and 115, to get

115 = 49 x 2 + 17

Step 3: We consider the new divisor 49 and the new remainder 17, and apply the division lemma to get

49 = 17 x 2 + 15

We consider the new divisor 17 and the new remainder 15,and apply the division lemma to get

17 = 15 x 1 + 2

We consider the new divisor 15 and the new remainder 2,and apply the division lemma to get

15 = 2 x 7 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 509 and 115 is 1

Notice that 1 = HCF(2,1) = HCF(15,2) = HCF(17,15) = HCF(49,17) = HCF(115,49) = HCF(509,115) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 432 > 1, we apply the division lemma to 432 and 1, to get

432 = 1 x 432 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 432 is 1

Notice that 1 = HCF(432,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 692 > 1, we apply the division lemma to 692 and 1, to get

692 = 1 x 692 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 692 is 1

Notice that 1 = HCF(692,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 509, 115, 432, 692 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 509, 115, 432, 692?

Answer: HCF of 509, 115, 432, 692 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 509, 115, 432, 692 using Euclid's Algorithm?

Answer: For arbitrary numbers 509, 115, 432, 692 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.