Highest Common Factor of 510, 776, 379 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 510, 776, 379 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 510, 776, 379 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 510, 776, 379 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 510, 776, 379 is 1.

HCF(510, 776, 379) = 1

HCF of 510, 776, 379 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 510, 776, 379 is 1.

Highest Common Factor of 510,776,379 using Euclid's algorithm

Highest Common Factor of 510,776,379 is 1

Step 1: Since 776 > 510, we apply the division lemma to 776 and 510, to get

776 = 510 x 1 + 266

Step 2: Since the reminder 510 ≠ 0, we apply division lemma to 266 and 510, to get

510 = 266 x 1 + 244

Step 3: We consider the new divisor 266 and the new remainder 244, and apply the division lemma to get

266 = 244 x 1 + 22

We consider the new divisor 244 and the new remainder 22,and apply the division lemma to get

244 = 22 x 11 + 2

We consider the new divisor 22 and the new remainder 2,and apply the division lemma to get

22 = 2 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 510 and 776 is 2

Notice that 2 = HCF(22,2) = HCF(244,22) = HCF(266,244) = HCF(510,266) = HCF(776,510) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 379 > 2, we apply the division lemma to 379 and 2, to get

379 = 2 x 189 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 379 is 1

Notice that 1 = HCF(2,1) = HCF(379,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 510, 776, 379 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 510, 776, 379?

Answer: HCF of 510, 776, 379 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 510, 776, 379 using Euclid's Algorithm?

Answer: For arbitrary numbers 510, 776, 379 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.