Highest Common Factor of 5108, 347 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5108, 347 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5108, 347 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5108, 347 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5108, 347 is 1.

HCF(5108, 347) = 1

HCF of 5108, 347 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5108, 347 is 1.

Highest Common Factor of 5108,347 using Euclid's algorithm

Highest Common Factor of 5108,347 is 1

Step 1: Since 5108 > 347, we apply the division lemma to 5108 and 347, to get

5108 = 347 x 14 + 250

Step 2: Since the reminder 347 ≠ 0, we apply division lemma to 250 and 347, to get

347 = 250 x 1 + 97

Step 3: We consider the new divisor 250 and the new remainder 97, and apply the division lemma to get

250 = 97 x 2 + 56

We consider the new divisor 97 and the new remainder 56,and apply the division lemma to get

97 = 56 x 1 + 41

We consider the new divisor 56 and the new remainder 41,and apply the division lemma to get

56 = 41 x 1 + 15

We consider the new divisor 41 and the new remainder 15,and apply the division lemma to get

41 = 15 x 2 + 11

We consider the new divisor 15 and the new remainder 11,and apply the division lemma to get

15 = 11 x 1 + 4

We consider the new divisor 11 and the new remainder 4,and apply the division lemma to get

11 = 4 x 2 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5108 and 347 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(11,4) = HCF(15,11) = HCF(41,15) = HCF(56,41) = HCF(97,56) = HCF(250,97) = HCF(347,250) = HCF(5108,347) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5108, 347 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5108, 347?

Answer: HCF of 5108, 347 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5108, 347 using Euclid's Algorithm?

Answer: For arbitrary numbers 5108, 347 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.