Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 511, 788, 566 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 511, 788, 566 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 511, 788, 566 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 511, 788, 566 is 1.
HCF(511, 788, 566) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 511, 788, 566 is 1.
Step 1: Since 788 > 511, we apply the division lemma to 788 and 511, to get
788 = 511 x 1 + 277
Step 2: Since the reminder 511 ≠ 0, we apply division lemma to 277 and 511, to get
511 = 277 x 1 + 234
Step 3: We consider the new divisor 277 and the new remainder 234, and apply the division lemma to get
277 = 234 x 1 + 43
We consider the new divisor 234 and the new remainder 43,and apply the division lemma to get
234 = 43 x 5 + 19
We consider the new divisor 43 and the new remainder 19,and apply the division lemma to get
43 = 19 x 2 + 5
We consider the new divisor 19 and the new remainder 5,and apply the division lemma to get
19 = 5 x 3 + 4
We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get
5 = 4 x 1 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 511 and 788 is 1
Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(19,5) = HCF(43,19) = HCF(234,43) = HCF(277,234) = HCF(511,277) = HCF(788,511) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 566 > 1, we apply the division lemma to 566 and 1, to get
566 = 1 x 566 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 566 is 1
Notice that 1 = HCF(566,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 511, 788, 566?
Answer: HCF of 511, 788, 566 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 511, 788, 566 using Euclid's Algorithm?
Answer: For arbitrary numbers 511, 788, 566 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.