Highest Common Factor of 512, 884 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 512, 884 i.e. 4 the largest integer that leaves a remainder zero for all numbers.

HCF of 512, 884 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 512, 884 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 512, 884 is 4.

HCF(512, 884) = 4

HCF of 512, 884 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 512, 884 is 4.

Highest Common Factor of 512,884 using Euclid's algorithm

Highest Common Factor of 512,884 is 4

Step 1: Since 884 > 512, we apply the division lemma to 884 and 512, to get

884 = 512 x 1 + 372

Step 2: Since the reminder 512 ≠ 0, we apply division lemma to 372 and 512, to get

512 = 372 x 1 + 140

Step 3: We consider the new divisor 372 and the new remainder 140, and apply the division lemma to get

372 = 140 x 2 + 92

We consider the new divisor 140 and the new remainder 92,and apply the division lemma to get

140 = 92 x 1 + 48

We consider the new divisor 92 and the new remainder 48,and apply the division lemma to get

92 = 48 x 1 + 44

We consider the new divisor 48 and the new remainder 44,and apply the division lemma to get

48 = 44 x 1 + 4

We consider the new divisor 44 and the new remainder 4,and apply the division lemma to get

44 = 4 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 512 and 884 is 4

Notice that 4 = HCF(44,4) = HCF(48,44) = HCF(92,48) = HCF(140,92) = HCF(372,140) = HCF(512,372) = HCF(884,512) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 512, 884 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 512, 884?

Answer: HCF of 512, 884 is 4 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 512, 884 using Euclid's Algorithm?

Answer: For arbitrary numbers 512, 884 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.