Highest Common Factor of 513, 370 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 513, 370 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 513, 370 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 513, 370 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 513, 370 is 1.

HCF(513, 370) = 1

HCF of 513, 370 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 513, 370 is 1.

Highest Common Factor of 513,370 using Euclid's algorithm

Highest Common Factor of 513,370 is 1

Step 1: Since 513 > 370, we apply the division lemma to 513 and 370, to get

513 = 370 x 1 + 143

Step 2: Since the reminder 370 ≠ 0, we apply division lemma to 143 and 370, to get

370 = 143 x 2 + 84

Step 3: We consider the new divisor 143 and the new remainder 84, and apply the division lemma to get

143 = 84 x 1 + 59

We consider the new divisor 84 and the new remainder 59,and apply the division lemma to get

84 = 59 x 1 + 25

We consider the new divisor 59 and the new remainder 25,and apply the division lemma to get

59 = 25 x 2 + 9

We consider the new divisor 25 and the new remainder 9,and apply the division lemma to get

25 = 9 x 2 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 513 and 370 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(25,9) = HCF(59,25) = HCF(84,59) = HCF(143,84) = HCF(370,143) = HCF(513,370) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 513, 370 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 513, 370?

Answer: HCF of 513, 370 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 513, 370 using Euclid's Algorithm?

Answer: For arbitrary numbers 513, 370 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.