Highest Common Factor of 514, 327 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 514, 327 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 514, 327 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 514, 327 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 514, 327 is 1.

HCF(514, 327) = 1

HCF of 514, 327 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 514, 327 is 1.

Highest Common Factor of 514,327 using Euclid's algorithm

Highest Common Factor of 514,327 is 1

Step 1: Since 514 > 327, we apply the division lemma to 514 and 327, to get

514 = 327 x 1 + 187

Step 2: Since the reminder 327 ≠ 0, we apply division lemma to 187 and 327, to get

327 = 187 x 1 + 140

Step 3: We consider the new divisor 187 and the new remainder 140, and apply the division lemma to get

187 = 140 x 1 + 47

We consider the new divisor 140 and the new remainder 47,and apply the division lemma to get

140 = 47 x 2 + 46

We consider the new divisor 47 and the new remainder 46,and apply the division lemma to get

47 = 46 x 1 + 1

We consider the new divisor 46 and the new remainder 1,and apply the division lemma to get

46 = 1 x 46 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 514 and 327 is 1

Notice that 1 = HCF(46,1) = HCF(47,46) = HCF(140,47) = HCF(187,140) = HCF(327,187) = HCF(514,327) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 514, 327 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 514, 327?

Answer: HCF of 514, 327 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 514, 327 using Euclid's Algorithm?

Answer: For arbitrary numbers 514, 327 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.