Highest Common Factor of 517, 893 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 517, 893 i.e. 47 the largest integer that leaves a remainder zero for all numbers.

HCF of 517, 893 is 47 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 517, 893 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 517, 893 is 47.

HCF(517, 893) = 47

HCF of 517, 893 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 517, 893 is 47.

Highest Common Factor of 517,893 using Euclid's algorithm

Highest Common Factor of 517,893 is 47

Step 1: Since 893 > 517, we apply the division lemma to 893 and 517, to get

893 = 517 x 1 + 376

Step 2: Since the reminder 517 ≠ 0, we apply division lemma to 376 and 517, to get

517 = 376 x 1 + 141

Step 3: We consider the new divisor 376 and the new remainder 141, and apply the division lemma to get

376 = 141 x 2 + 94

We consider the new divisor 141 and the new remainder 94,and apply the division lemma to get

141 = 94 x 1 + 47

We consider the new divisor 94 and the new remainder 47,and apply the division lemma to get

94 = 47 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 47, the HCF of 517 and 893 is 47

Notice that 47 = HCF(94,47) = HCF(141,94) = HCF(376,141) = HCF(517,376) = HCF(893,517) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 517, 893 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 517, 893?

Answer: HCF of 517, 893 is 47 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 517, 893 using Euclid's Algorithm?

Answer: For arbitrary numbers 517, 893 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.