Highest Common Factor of 518, 407, 275 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 518, 407, 275 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 518, 407, 275 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 518, 407, 275 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 518, 407, 275 is 1.

HCF(518, 407, 275) = 1

HCF of 518, 407, 275 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 518, 407, 275 is 1.

Highest Common Factor of 518,407,275 using Euclid's algorithm

Highest Common Factor of 518,407,275 is 1

Step 1: Since 518 > 407, we apply the division lemma to 518 and 407, to get

518 = 407 x 1 + 111

Step 2: Since the reminder 407 ≠ 0, we apply division lemma to 111 and 407, to get

407 = 111 x 3 + 74

Step 3: We consider the new divisor 111 and the new remainder 74, and apply the division lemma to get

111 = 74 x 1 + 37

We consider the new divisor 74 and the new remainder 37, and apply the division lemma to get

74 = 37 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 37, the HCF of 518 and 407 is 37

Notice that 37 = HCF(74,37) = HCF(111,74) = HCF(407,111) = HCF(518,407) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 275 > 37, we apply the division lemma to 275 and 37, to get

275 = 37 x 7 + 16

Step 2: Since the reminder 37 ≠ 0, we apply division lemma to 16 and 37, to get

37 = 16 x 2 + 5

Step 3: We consider the new divisor 16 and the new remainder 5, and apply the division lemma to get

16 = 5 x 3 + 1

We consider the new divisor 5 and the new remainder 1, and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 37 and 275 is 1

Notice that 1 = HCF(5,1) = HCF(16,5) = HCF(37,16) = HCF(275,37) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 518, 407, 275 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 518, 407, 275?

Answer: HCF of 518, 407, 275 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 518, 407, 275 using Euclid's Algorithm?

Answer: For arbitrary numbers 518, 407, 275 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.