Highest Common Factor of 519, 362, 70, 786 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 519, 362, 70, 786 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 519, 362, 70, 786 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 519, 362, 70, 786 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 519, 362, 70, 786 is 1.

HCF(519, 362, 70, 786) = 1

HCF of 519, 362, 70, 786 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 519, 362, 70, 786 is 1.

Highest Common Factor of 519,362,70,786 using Euclid's algorithm

Highest Common Factor of 519,362,70,786 is 1

Step 1: Since 519 > 362, we apply the division lemma to 519 and 362, to get

519 = 362 x 1 + 157

Step 2: Since the reminder 362 ≠ 0, we apply division lemma to 157 and 362, to get

362 = 157 x 2 + 48

Step 3: We consider the new divisor 157 and the new remainder 48, and apply the division lemma to get

157 = 48 x 3 + 13

We consider the new divisor 48 and the new remainder 13,and apply the division lemma to get

48 = 13 x 3 + 9

We consider the new divisor 13 and the new remainder 9,and apply the division lemma to get

13 = 9 x 1 + 4

We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get

9 = 4 x 2 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 519 and 362 is 1

Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(13,9) = HCF(48,13) = HCF(157,48) = HCF(362,157) = HCF(519,362) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 70 > 1, we apply the division lemma to 70 and 1, to get

70 = 1 x 70 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 70 is 1

Notice that 1 = HCF(70,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 786 > 1, we apply the division lemma to 786 and 1, to get

786 = 1 x 786 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 786 is 1

Notice that 1 = HCF(786,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 519, 362, 70, 786 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 519, 362, 70, 786?

Answer: HCF of 519, 362, 70, 786 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 519, 362, 70, 786 using Euclid's Algorithm?

Answer: For arbitrary numbers 519, 362, 70, 786 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.