Highest Common Factor of 519, 447, 913, 59 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 519, 447, 913, 59 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 519, 447, 913, 59 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 519, 447, 913, 59 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 519, 447, 913, 59 is 1.

HCF(519, 447, 913, 59) = 1

HCF of 519, 447, 913, 59 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 519, 447, 913, 59 is 1.

Highest Common Factor of 519,447,913,59 using Euclid's algorithm

Highest Common Factor of 519,447,913,59 is 1

Step 1: Since 519 > 447, we apply the division lemma to 519 and 447, to get

519 = 447 x 1 + 72

Step 2: Since the reminder 447 ≠ 0, we apply division lemma to 72 and 447, to get

447 = 72 x 6 + 15

Step 3: We consider the new divisor 72 and the new remainder 15, and apply the division lemma to get

72 = 15 x 4 + 12

We consider the new divisor 15 and the new remainder 12,and apply the division lemma to get

15 = 12 x 1 + 3

We consider the new divisor 12 and the new remainder 3,and apply the division lemma to get

12 = 3 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 519 and 447 is 3

Notice that 3 = HCF(12,3) = HCF(15,12) = HCF(72,15) = HCF(447,72) = HCF(519,447) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 913 > 3, we apply the division lemma to 913 and 3, to get

913 = 3 x 304 + 1

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 913 is 1

Notice that 1 = HCF(3,1) = HCF(913,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 59 > 1, we apply the division lemma to 59 and 1, to get

59 = 1 x 59 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 59 is 1

Notice that 1 = HCF(59,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 519, 447, 913, 59 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 519, 447, 913, 59?

Answer: HCF of 519, 447, 913, 59 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 519, 447, 913, 59 using Euclid's Algorithm?

Answer: For arbitrary numbers 519, 447, 913, 59 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.