Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 519, 447, 913, 59 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 519, 447, 913, 59 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 519, 447, 913, 59 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 519, 447, 913, 59 is 1.
HCF(519, 447, 913, 59) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 519, 447, 913, 59 is 1.
Step 1: Since 519 > 447, we apply the division lemma to 519 and 447, to get
519 = 447 x 1 + 72
Step 2: Since the reminder 447 ≠ 0, we apply division lemma to 72 and 447, to get
447 = 72 x 6 + 15
Step 3: We consider the new divisor 72 and the new remainder 15, and apply the division lemma to get
72 = 15 x 4 + 12
We consider the new divisor 15 and the new remainder 12,and apply the division lemma to get
15 = 12 x 1 + 3
We consider the new divisor 12 and the new remainder 3,and apply the division lemma to get
12 = 3 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 519 and 447 is 3
Notice that 3 = HCF(12,3) = HCF(15,12) = HCF(72,15) = HCF(447,72) = HCF(519,447) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 913 > 3, we apply the division lemma to 913 and 3, to get
913 = 3 x 304 + 1
Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 913 is 1
Notice that 1 = HCF(3,1) = HCF(913,3) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 59 > 1, we apply the division lemma to 59 and 1, to get
59 = 1 x 59 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 59 is 1
Notice that 1 = HCF(59,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 519, 447, 913, 59?
Answer: HCF of 519, 447, 913, 59 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 519, 447, 913, 59 using Euclid's Algorithm?
Answer: For arbitrary numbers 519, 447, 913, 59 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.